# Test: Arithmetic I - Normal

Double click on maths expressions to zoom
Question 1:   Which of the following sets of numbers consists only from the whole numbers?
$-1,0,1$
$\sqrt[3]{-27},4,7$
$\sqrt{46},{2}^{3},\sqrt{4}$
$\sqrt{25},{2}^{2},\sqrt[3]{8}$
Question 2:   Which of the following sets of numbers consists only from natural numbers?
$\frac{27}{3},\sqrt{8},2\cdot \frac{1}{2}$
$2\cdot \frac{2}{3},\sqrt{4},3\cdot \left(-6\right)$
$\sqrt{16},2\cdot \frac{3}{2},-2\cdot \left(-7\right)$
$\sqrt{6},3,\frac{15}{3}$
Question 3:   Which of the following sets of numbers consists only from integers:
$\sqrt[3]{-27},-2090,\frac{81}{3}$
$\frac{100}{6},\sqrt{16},-12$
$\sqrt{27},86,-\frac{105}{15}$
$-\sqrt{25},-13,\frac{100}{15}$
Question 4:   Arrange the following set of numbers from the largest to the smallest: ${2}^{3}$ , $4\frac{1}{2}$ , $\frac{39}{13}$ , $\sqrt{16}+\sqrt{25}$ , $\pi$
$\sqrt{16}+\sqrt{25},{2}^{3},\pi ,{4}^{\frac{1}{2}},\frac{39}{13}$
$\frac{39}{13},\sqrt{16}+\sqrt{25},\pi ,{2}^{3},{4}^{\frac{1}{2}}$
$\sqrt{16}+\sqrt{25},{2}^{3},\pi ,\frac{39}{13},{4}^{\frac{1}{2}}$
${4}^{\frac{1}{2}},\sqrt{16}+\sqrt{25},\pi ,{2}^{3},\frac{39}{13}$
Question 5:   Arrange the following set of numbers from the smallest to the largest: ${-\left(\frac{1}{2}\right)}^{2}$ , $\sqrt{\frac{1}{9}}$ , ${1}^{100}$ , $-{100}^{0}$ , $\frac{\pi }{2}$
$-{100}^{0},\sqrt{\frac{1}{9}},-{\left(\frac{1}{2}\right)}^{2},{1}^{100},\frac{\pi }{2}$
$-{100}^{0},-{\left(\frac{1}{2}\right)}^{2},\sqrt{\frac{1}{9}},{1}^{100},\frac{\pi }{2}$
$-{\left(\frac{1}{2}\right)}^{2},-{100}^{0},{1}^{100},\sqrt{\frac{1}{9}},\frac{\pi }{2}$
$-{100}^{0},\sqrt{\frac{1}{9}},{1}^{100},-{\left(\frac{1}{2}\right)}^{2},\frac{\pi }{2}$
Please note, you have solved only half of the test. For the complete test get a Must Have account. Get started