# Test: Differentiation I - Normal

Double click on maths expressions to zoom
Question 1:   Differentiate $y$ with respect to $x:$ $y={x}^{2}-5x$
$\frac{dy}{dx}=2x$
$\frac{dy}{dx}=2x-5$
$\frac{dy}{dx}=-5$
$\frac{dy}{dx}={x}^{2}-5$
Question 2:   Differentiate $y$ with respect to $x:$ $y=\mathrm{ln}\left(x\right)$
$\frac{dy}{dx}=\frac{1}{x}$
$\frac{dy}{dx}=\frac{1}{{x}^{2}+1}$
$\frac{dy}{dx}=\mathrm{ln}\left(\frac{1}{x}\right)$
$\frac{dy}{dx}=\frac{1}{{x}^{2}}$
Question 3:   The function f is defined by: $f\left(x\right)=5$. Find $f\text{'}\left(x\right)$
$f\text{'}\left(x\right)=0$
$f\text{'}\left(x\right)=1$
$f\text{'}\left(x\right)=5$
$f\text{'}\left(x\right)=x$
Question 4:   Differentiate $y$ with respect to $x:$ $y=\mathrm{tan}\left(5x\right)$
$\frac{dx}{dy}=\frac{1}{{\mathrm{cos}}^{2}\left(x\right)}$
$\frac{dx}{dy}=\frac{5}{{\mathrm{cos}}^{2}\left(x\right)}$
$\frac{dx}{dy}=\frac{5}{{\mathrm{cos}}^{2}\left(5x\right)}$
$\frac{dx}{dy}=\frac{1}{{\mathrm{cos}}^{2}\left(5x\right)}$
Question 5:   Find the gradient of the function $y={x}^{3}$ at the point ${x}_{0}=2$
$k=12$
$k=0.5$
$k=8$
$k=4$
Question 6:   Find the gradient of the function $y=\mathrm{sin}\left(x\right)$ at the point ${x}_{0}=\pi$
$k=1$
$k=-1$
$k=0$
$k=2$
Question 7:   Find the gradient of the function $y={x}^{2}-x$ at the point ${x}_{0}=1$
$k=-1$
$k=1$
$k=2$
$k=0$
Question 8:   Find the gradient of the function $y=7x$ at the point ${x}_{0}=20$
$k=140$
$k=7$
$k=0$
$k=-1$
Question 9:   The function s is defined by: $s\left(t\right)=5t-1$, find $s\text{'}\left(t\right)$
$v=9$
$v=7$
$v=5$
$v=3$
Question 10:   The function s is defined by: $s\left(t\right)=7t+1$ , find $s\text{'}\left(t\right)$
$v=6$
$v=7$
$v=5$
$v=9$