# Test: Inequalities I - Normal

Double click on maths expressions to zoom
Question 1:   Which number is in the solution set of the inequality:  $3x+5<8$ ?
$3$
$10$
$5$
$-1$
Question 2:   Which number is in the solution set of the inequality:  ${x}^{2}-8x>0$ ?
$0$
$5$
$10$
$8$
Question 3:   Which number belongs to the interval:  $\left(5;10\right]$ ?
$4$
$20$
$5$
$6.25$
Question 4:   Which of the following graphs represents inequality:  $x>5$ .

Question 5:   Which number satisfies the condition:  $\left\{\begin{array}{l}x>0\\ x\in \left(-1;8\right]\end{array}\right\$
$-1$
$8$
$-4$
$0$
Question 6:   Which number satisfies the condition:  $\left\{\begin{array}{l}x>0\\ x\le 5\end{array}\right\$
$0$
$5$
$6$
$-1$
Question 7:   Solve the inequality:  $6-7x>27$
$x\in \left(-\infty ;-4\right)\cup \left\{-3\right\}$
$x\in \left(-\infty ;-3\right)$
$x\in \left(-3;+\infty \right)$
$x\in \left(-\infty ;-2\right]$
Question 8:   Which inequality is represented by the below graph?

$3
$3\le x<9$
$3
$3
Question 9:   Which interval represents solution of the inequality:  $\left|x\right|<6$
$x\in \left(0;6\right)$
$x\in \left(-6;6\right)$
$x\in \left(-\infty ;-6\right)\cup \left(6;+\infty \right)$
$x\in \left[-6;6\right]$
Question 10:   Solve the inequality:  $\frac{x+4}{2}>\frac{3-x}{3}$
$x\in \left(-\frac{6}{5};\frac{6}{5}\right)$
$x\in \left(-1;+\infty \right)$
$x\in \left(-\frac{6}{5};+\infty \right)$
$x\in \left(-\infty ;-\frac{6}{5}\right)$