Test:
Trigonometric Equations I - Challenging
×
Double click on maths expressions to zoom
Question 1:
Solve the equation
cos
π
8
−
4
x
=
1
.
A
x
=
π
32
−
π
n
2
,
n
∈
Ζ
B
x
=
π
8
−
π
n
2
,
n
∈
Ζ
C
x
=
π
8
−
2
π
n
,
n
∈
Ζ
D
x
=
π
32
−
2
π
n
,
n
∈
Ζ
Question 2:
Find the biggest negative root of the equation
sin
3
x
−
π
15
=
−
1
.
A
x
=
−
π
B
x
=
−
13
π
45
C
x
=
−
13
π
90
D
x
=
−
17
π
90
Question 3:
Find the sum of the roots of the equation
t
g
2
x
=
−
3
, which belong to the range
−
π
;
π
2
.
A
−
π
3
B
−
π
2
C
π
6
D
−
5
π
6
Question 4:
Solve the equation
a
r
c
c
o
s
x
=
1
3
.
A
s
i
n
1
3
B
π
3
C
c
o
s
1
3
D
1
3
Question 5:
Solve the inequality
a
r
c
t
g
4
x
−
5
>
−
π
3
.
A
x
∈
−
5
;
π
3
B
x
∈
−
π
3
;
5
C
x
∈
5
−
3
4
;
+
∞
D
x
∈
−
∞
;
5
−
3
4
Question 6:
Solve the equation
2
s
i
n
x
c
o
s
x
+
cos
2
x
=
1
.
A
x
=
π
n
,
n
∈
Ζ
B
x
=
π
2
+
π
n
,
n
∈
Ζ
C
x
=
π
n
x
=
a
r
c
t
g
2
+
π
n
n
∈
Ζ
D
x
=
a
r
c
t
g
2
Question 7:
Solve the equation
c
o
s
x
+
t
g
x
=
0
.
A
x
=
−
1
n
a
r
c
s
i
n
1
±
5
2
+
π
n
,
n
∈
Ζ
B
x
=
a
r
c
s
i
n
1
−
5
2
+
2
π
n
,
n
∈
Ζ
C
x
=
1
±
5
2
D
x
=
−
1
n
a
r
c
s
i
n
1
−
5
2
+
π
n
,
n
∈
Ζ
Question 8:
Solve the equation
c
o
s
2
x
c
o
s
x
=
0
.
A
1
2
;
1
B
x
=
π
4
+
π
n
2
,
n
ϵ
Ζ
C
x
=
π
4
+
π
n
2
;
π
2
+
π
n
,
n
ϵ
Ζ
;
D
x
=
π
2
+
π
n
,
n
ϵ
Ζ
Question 9:
Solve the inequality
s
i
n
x
<
3
2
.
A
x
∈
2
π
3
+
2
π
n
;
7
π
3
+
2
π
n
,
n
∈
Ζ
B
x
∈
π
3
+
2
π
n
;
7
π
3
+
2
π
n
,
n
∈
Ζ
C
x
∈
π
3
+
2
π
n
;
2
π
3
+
2
π
n
,
n
∈
Ζ
D
x
<
π
3
Question 10:
Solve the equation
s
i
n
3
x
+
s
i
n
x
=
s
i
n
2
x
.
A
x
=
π
n
2
,
±
π
3
+
2
π
n
,
n
ϵ
Ζ
B
x
=
2
π
n
,
n
ϵ
Ζ
C
x
=
±
π
3
+
2
π
n
,
n
ϵ
Ζ
D
x
=
π
n
2
,
n
ϵ
Ζ
Prev Page
Next Page
Submit
Click here to resume the test
Saving test