Test: Algebraic expressions II - Ambitious

Double click on maths expressions to zoom
Question 1:   Simplify: 3 l 2 mn+n l 2 m5m n 2 l+ l 2 nm+2 n 2 mlm n 2
5mn( l 2 +nlm )
mn( 5 l 2 3nln )
mn( 5 l 2 3nl+m )
l 2 ( 5mn2ml+n )
Question 2:   Simplify: z 7 ÷ z x z y 2
z 7+x+ y 2
z 7+x y 2
z(7x y 2 )
z 7x+ y 2
Question 3:   Remove the brackets: { 2[ x3( y4 ) ]5( z+6 ) }
2x6y+5z+6
2x6y5z28
2x6y+5z+54
2x+3y5z+20
Question 4:   Remove logs: logF=logG+logHlog( 1 M )2logR
F=2 GH MR
F= GH M R 2
F= GHM R 2
F=G+M 1 M 2R
Question 5:   Rewrite in the logarithmic form: T=2π L G
logT=log2+logπ+ 1 2 ( logLlogG )
logT=log 2πL G
logT=log2+logπ 1 2 logLlogG
logT=log2+logπ ( logLlogG ) 2
Question 6:   Simplify: ( n 2 +2n3 )( 4n+5 )
4 n 3 3 n 2 2n+15
4 n 3 +13 n 2 n12
4 n 3 +13 n 2 2n15
4 n 3 13 n 2 2n+15
Question 7:   Simplify: x y 3 ÷ y x 3
x 4 y 4
y 4 x 4
xy y 3 x 3
x 3 y 3
Question 8:   Divide: a 3 8 a2
a 2 4
a 3 6 a 2 12a
a 2 +2a2
a 2 +2a+4
Question 9:   Factorise: 18 x 2 y12x y 2
6xy( 13x2 )
6y( 3x2y )
xy( 18xy )
6xy( 3x2y )
Question 10:   Factorise: 12 x 2 25x+12
( 4x3 )( 4x3 )
( x+3 )( 4x3 )
( 3x4 )( 3x+4 )
( 4x3 )( 3x4 )