Test:
Differentiation - Ambitious
×
Double click on maths expressions to zoom
Question 1:
Find the gradient of a straight line whith the points
P
(
5,3
)
and
Q
(
8,12
)
A
1
B
−
1
C
3
D
2
Question 2:
Find
d
y
d
x
for
y
=
5
x
3
−
2
x
2
+
7
x
−
15
A
d
y
d
x
=
15
x
3
−
4
x
2
+
7
x
−
15
B
d
y
d
x
=
−
x
2
+
x
−
1
C
d
y
d
x
=
15
x
2
−
4
x
+
7
D
d
y
d
x
=
125
x
2
−
4
x
+
49
Question 3:
Find
d
2
y
d
x
2
for
y
=
4
x
4
−
3
x
3
−
6
x
2
+
x
A
d
2
y
d
x
2
=
16
x
3
−
9
x
2
−
12
x
+
1
B
d
2
y
d
x
2
=
16
x
2
−
9
x
−
12
C
d
2
y
d
x
2
=
8
x
2
−
6
x
−
8
D
d
2
y
d
x
2
=
48
x
2
−
18
x
−
12
Question 4:
Find
d
y
d
x
at
x
=
3
for
y
=
1
2
x
4
−
3
4
x
3
+
17
A
d
y
d
x
=
33.75
B
d
y
d
x
=
27.125
C
d
y
d
x
=
18
D
d
y
d
x
=
23.25
Question 5:
Find
d
y
d
x
of
y
=
e
x
cos
x
A
d
y
d
x
=
−
e
x
(
cos
x
−
sin
x
)
B
d
y
d
x
=
cos
x
−
sin
x
C
d
y
d
x
=
e
x
(
cos
x
−
sin
x
)
D
d
y
d
x
=
e
x
(
sin
x
−
cos
x
)
Question 6:
Find
d
y
d
x
of
y
=
7
x
4
sin
x
A
d
y
d
x
=
x
3
(
7
x
cos
x
+
sin
x
)
B
d
y
d
x
=
7
x
4
(
cos
x
+
4
sin
x
)
C
d
y
d
x
=
21
x
2
(
x
cos
x
−
4
sin
x
)
D
d
y
d
x
=
7
x
3
(
x
cos
x
+
4
sin
x
)
Question 7:
Find
d
y
d
x
of
y
=
sin
x
x
5
A
d
y
d
x
=
5
cos
x
x
4
B
d
y
d
x
=
5
cos
x
−
x
sin
x
x
5
C
d
y
d
x
=
5
cos
x
−
sin
x
x
4
D
d
y
d
x
=
x
cos
x
−
5
sin
x
x
6
Question 8:
Find
d
y
d
x
of
y
=
e
x
tan
x
A
d
y
d
x
=
e
x
(
tan
x
−
sec
2
x
)
tan
2
x
B
d
y
d
x
=
e
x
sec
2
x
C
d
y
d
x
=
e
x
sec
x
D
d
y
d
x
=
e
x
(
sin
x
−
cos
x
)
tan
2
x
Question 9:
Find
d
y
d
x
of
y
=
(
2
x
+
7
)
5
A
d
y
d
x
=
5
(
2
x
+
7
)
4
B
d
y
d
x
=
10
(
2
x
+
7
)
4
C
d
y
d
x
=
(
2
x
+
7
)
4
D
d
y
d
x
=
15
x
4
Question 10:
Find
d
y
d
x
of
y
=
6
e
cos
x
A
d
y
d
x
=
6
cos
x
e
cos
x
B
d
y
d
x
=
−
6
sin
e
cos
x
C
d
y
d
x
=
−
6
cos
e
sin
x
D
d
y
d
x
=
−
6
sin
x
e
cos
x
Prev Page
Next Page
Submit
Click here to resume the test
Saving test