# Test: Quadratic Function I - Ambitious

Double click on maths expressions to zoom
Question 1:   Complete the square: ${x}^{2}-12x+18$
${\left(x-6\right)}^{2}-12$
${\left(x-6\right)}^{2}-18$
${\left(x-6\right)}^{2}-24$
${\left(x-6\right)}^{2}+15$
Question 2:   Complete the square: $3{x}^{2}-15x+21$
$3{\left(x-2\right)}^{2}+5$
$3{\left(x-2.5\right)}^{2}+1.75$
$3{\left(x-2.5\right)}^{2}+2.25$
$3{\left(x-2.5\right)}^{2}+3$
Question 3:   Complete the square: $2{x}^{2}+7x+13$
$2{\left(x+1.5\right)}^{2}+6.25$
$2{\left(x-1.75\right)}^{2}+6.75$
$2{\left(x+1.5\right)}^{2}+6.125$
$2{\left(x+1.75\right)}^{2}+6.875$
Question 4:   Find the sum of the roots of the quadratic equation: ${x}^{2}-15x+2.5=0$
$15$
$3$
$5$
$-15$
Question 5:   Find the sum of the roots of the periodic equation: $3{x}^{2}-4x+5=0$
$-4$
$2\frac{1}{3}$
there are no roots
$4$
Question 6:   Find the product of the roots of a quadratic equation: ${x}^{2}-17x+23=0$
$23$
$-23$
$-17$
$11.5$
Question 7:   Find the product of the roots of a quadratic equation: $-7{x}^{2}+2x+21=0$
$-7$
$-3$
$21$
$-21$
Question 8:   Solve the quadratic equation: $-7{x}^{2}+2x+21=0$
$\left\{\begin{array}{l}{x}_{1}=2\\ {x}_{2}=3\end{array}$
$\left\{\begin{array}{l}{x}_{1}=1\\ {x}_{2}=4\end{array}$
$\left\{\begin{array}{l}{x}_{1}=2\frac{1}{2}\\ {x}_{2}=5\frac{1}{2}\end{array}$
$\left\{\begin{array}{l}{x}_{1}=-1\\ {x}_{2}=2\end{array}$
Question 9:   Solve the quadratic equation: $2{x}^{2}+7x+6=0$
$\left\{\begin{array}{l}{x}_{1}=-2\\ {x}_{2}=\frac{1}{3}\end{array}$
$\left\{\begin{array}{l}{x}_{1}=-2\\ {x}_{2}=-1\frac{1}{2}\end{array}$
$\left\{\begin{array}{l}{x}_{1}=-1\\ {x}_{2}=1\end{array}$
$\left\{\begin{array}{l}{x}_{1}=-3\\ {x}_{2}=-1\end{array}$
Question 10:   Solve the quadratic equation:
$\left\{\begin{array}{l}{x}_{1}=-1.15\\ {x}_{2}=-38.22\end{array}$
$\left\{\begin{array}{l}{x}_{1}=-2.33\\ {x}_{2}=-24.66\end{array}$
$\left\{\begin{array}{l}{x}_{1}=-2.18\\ {x}_{2}=-28.43\end{array}$
$\left\{\begin{array}{l}{x}_{1}=0.66\\ {x}_{2}=-48.66\end{array}$